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Abstract

The suppresion of chaos in a two-dimensional map, which models the competition between the
populations of two species, is presented. As a result, steady-state and different periodic motions,
embedded in the chaotic attractor, have been stabilized.
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Inroduction

In the last twenty years the presence of chaos in different
domains (physical, chemical, biological or economical) has
been extensively demonstrated (see [1], [2] or [3] for a re-
cent survey). The basic characteristic of the chaotic sys-
tems, which are dissipative non-linear dynamic systems,
defined either as a set of coupled differential equations or
as iterative maps, is the extreme sensitivity to small pertur-
bations in their initial conditions. This characteristic has
been considered to be a troublesome property and for many
years it was generally believed that chaotic behaviors are
not controllable. Recent works have demonstrated that
even this property permits the use of small perturbations to
control phase trajectories of these systems.

An efficient method for achieving control was proposed
by Ott, Grebogi and Yorke OGY [4]. They have shown that
it is possible to obtain a regular or a periodic behavior by
making small time-dependent perturbations in some accesi-
ble system parameters. The OGY method and its variants
have been applied to different experimental systems [5-7].

Another method of controlling chaos has been recently
proposed by Giiémez and Matias (G.M.) [8]. This method
allows chaotic systems (o be stabilized by performing
changes in the system variables. It was applied in the case
of a chemical system [9], but the authors consider it po-
ssibile to apply their method to some biological systems.

In the present work we apply the G.M. method to a mo-
del which describes the competition between the popula-
tions of two species, a prey-predator model.

The Prey-Predator Model

There are different prey-predator models in the form of
a set of coupled differential equations (see e.g. [10]), but
we will take into consideration a discrete model defined by
the two-dimensional map:

Xt = dXp {1 ) B Ijxn)"n (N
Yor1 = dxnyn

where x and y represent the prey and predator population,
respectively, and a, b, d are positive parameters.

This model considers the prey’s growth be governed by
a logistic map. The terms (—b x y) and (+d x y) describe
prey-predator encounters which are favorable to predators
and fatal to prey.

The map under consideration has a rich behavior. Thus it
has two equilibrium points (fixed points)
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The noﬁzem fixed point, which depends on parameters a, b,
d, is stable for
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Fig. 1. Bifurcation diagrams for the system’s variables.
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the fixed point becomes unstable and begins to bifurcate,
the bifurcated solution being oscillatory. This phenomenon
is know as a Hopf bifurcation.

For larger values of parameters the limit cycles, obtained
by Hopf bifurcations, become unstable and the chaotic be-
havior of the systems is observed.

The results of numerical investigations are presented be-
low. In Fig. 1 the behavior of the system’s variables versus
parameter a (with b = 0.2 and d = 3.5) is shown. A blow-up
of a region of a € (2.92, 2.94) is depicted in Fig. 2, and the
details of some windows with different periods are shown
in Fig. 3 for a € (3.3, 3.6).

For a = d = 3 the fixed point becomes unstable and
begins to bifurcate (a Hopf bifurcation). This can be obser-
ved in Figs. 4 and 5 where we plotted the variations of
y versus x for two values of a before and after the bifur-
cation.

In Fig. 6 we show a strange attractor for a value of a in
the chaotic domain on Fig. 1.

When y becomes zero, the behavior of the system is
a logistic like one. This can be seen on the Fig. 7.

Fig. 2. A blowup of a region of the bifurcation diagram for the
x variable.

Fig. 3. A blowup of a domain with periodic windows of the bifur-
cation diagrams.

The Stabilization Method

The G.M. control algorithm, in the case of a two-dimen-
sional map, consists in the application of the pulses in the
system variables. Hence the variables x and y are modified,
every An iterations in the form:

Xn =2 Xq (l + Yl) y Yn b Yn (] ik YZ): (3)

where v, and 7, represent the intensity of the pulses for
x and y, respectively.

For the sake of simplicity we have assumed y, =y, = .

By this method, depending on the sign of y, some part of
x (or y) is injected or retired from the map, which depends
on the value of x, (or y,) at that moment. By appropriately
choosing An and 7, it is possible to stabilize different un-
stable periodic orbits.

We have applied the G.M. method to the map (1) for
some values of the parameters, when the system has a cha-
otic behavior (a strange attractor). Different values for An
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Fig. 4. Phase portrait of the map before the Hopf bifurcation,
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Fig. 5. Phase portrait of the map after the Hopf bifurcation,

and y have been considered. The results are illustrated in
Figs. 8-10, where we have plotted x and y respectively
versus number n of iterations. The vertical dashed line
splits the figures in two regions: before and after the action
of the control algorithm.

Conclusions

This work presents some results of controlling chaos in
a two-dimensional map, which models the competition bet-
ween the populations of two species. We have chosen the
G.M. method, which consists in the application of pulses of
intesity Yy every An iterations in the system variables. Thus
we were able to stabilize different periodic motions embed-
ded in the chaotic attractor, even a steady state. This result
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Fig. 6. A strange attractor of the map.
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Fig. 7. Behavior of the map when y becomes zero.
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Fig. 8. A stabilized periodic motion of both variables x and y.
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Fig. 9. A stabilized periodic motion of x and a steady-state of y,
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Fig. 10. A stabilized steady-state of x and y.
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could be regarded, from a practical point of view, as those
which are obtained if one considers (for example) some
harvesting activity in the considered biological system.
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